
COMP3161/COMP9164 Supplementary Lecture Notes

Type Inference

Liam O’Connor Johannes Åman Pohjola∗ Rob Sison†

October 31, 2024

Explicitly typed polymorphic languages, such as the version of MinHS introduced with parametric
polymorphism, are very awkward to use in practice. The user must make explicit type abstractions
and applications. Ideally, we would like to leave these type annotations implicit, and have the
compiler infer types for us.

Considering the following expression:

recfun f x = fst x+ 1

We could give a number of possible types to this expression:

• (Int× Int) → Int

• (Int× Bool) → Int

• (Int× 0) → Int

The exact type inferred must depend on the surrounding context; that is, the argument to which
this function is applied. If the function is applied to many different arguments, then we would
need to generalise the type to ∀a. (Int× a) → Int.

In order to make type annotations implicit, we will start with polymorphic MinHS but remove
the following features:

• type signatures from recfun, let, etc.

• explicit type abstractions, and type applications (the @ operator).

• recursive types, because there is no unique most general type (principal type) for a given
term if we have general recursive types.

Our types may still contain type variables quantified by the ∀ operator, however now the compiler,
not the user, determines when to generalise and specialise types.

1 Implicitly-typed MinHS

The basic constructs of implicitly-typed MinHS are identical to explicitly-typed MinHS:

x : τ ∈ Γ

Γ ⊢ x : τ
Var

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
App

Γ ⊢ e1 : Bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ (If e1 e2 e3) : τ
If

∗Minor edits.
†Selection of content adapted to new type inference approach.

1



For simplicity, however, we will treat constructors and primitive operations as functions, whose
types are available in the environment. Uses of these operations and constructors are then just
function applications:

(+) : Int → Int → Int,Γ ⊢ (App (App (+) (Num 2)) (Num 1)) : Int

Other functions are defined as usual with recfun, but now types are not mentioned in the term:

x : τ1, f : τ1 → τ2,Γ ⊢ e : τ2

Γ ⊢ (Recfun (f.x. e)) : τ1 → τ2
Func

The two constructs for polymorphism, type abstraction (type) and application (the @ operator),
have now been removed. But, we still have the typing rules that allow us to specialise a polymorphic
type (replacing @):

Γ ⊢ e : ∀a.τ
Γ ⊢ e : τ [a := ρ]

AllE

And to quantify over any variable that has not already been used (replacing type)1:

Γ ⊢ e : τ a /∈ TV (Γ)

Γ ⊢ e : ∀a. τ
AllI

2 An Algorithm

We want a fully deterministic algorithm for type inference, which has a clear input and output.
We could imagine interpreting our existing rules as an algorithm, where the context and expression
are the input and the type is the output:

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
App

infer :: Context → Expr → Type

However this causes problems when we examine the rules for polymorphism (AllE and AllI).
Neither the rule to introduce nor the rule to eliminate ∀ quantifiers is syntax directed. They can
be applied at any time. For example, our AllI rule:

Γ ⊢ e : τ a /∈ TV (Γ)

Γ ⊢ e : ∀a. τ
AllI

Because this rule works on any expression and context, we have an infinite number of possible
types for every possible expression. Num 5 could be of type Int or ∀a. Int or ∀a. ∀b. Int etc.

In order to have an algorithmic set of rules, we need to fix not just when these rules are applied
but also how they are applied. For example, the rule to specialise a polymorphic type replaces a
quantified type variable with any type ρ, where this type is not able to be determined from the
input context and expression:

Γ ⊢ e : ∀a.τ
Γ ⊢ e : τ [a := ρ]

AllE

If the compiler makes the wrong decision when applying this rule, it can lead to typing errors even
for well-typed programs:

Γ ⊢ fst : ∀a. ∀b. (a× b) → a

Γ ⊢ fst : (Bool× Bool) → Bool

· · ·
Γ ⊢ (Pair 1 True) : (Int× Bool)

Γ ⊢ (Apply fst (Pair 1 True)) : ???

In the above example, we instantiated the type variable a to Bool, even though the provided pair
is actually Int× Bool.

1Where TV (Γ) here is all type variables occurring free in the types of variables in Γ

2



The Solution

To start with, we will make two decisions:

1. ∀ quantified type variables will be instantiated to particular types as soon as a polymorphic
type is found in the context for a particular term variable. That is, we shall merge the AllE
and Var rules, and not have a separate AllE rule.

2. ∀ quantifiers will only be introduced for the types of variables bound in let expressions. So,
we will not have a separate AllI rule either.

Leaving the second decision aside for a moment, we still have a problem with the first. We have
fixed when the rule is applied but not how : If we instantiate each ∀-quantified variable to a
particular type as soon as possible, we will not (yet) know what type to instantiate it to. For
example, looking up the type of fst in the context gives us a type ∀a. ∀b. (a× b) → a, but we do
not know at that point what a and b should be replaced with.

To resolve this, we allow types to include unknowns, also known as unification variables or
schematic variables. These are placeholders for types that we haven’t worked out yet. We shall
use α, β etc. for these variables. For example, (Int×α) → β is the type of a function from tuples
where the left side of the tuple is Int, but no other details of the type have been determined yet.

As we encounter situations where two types should be equal, we unify the two types to deter-
mine what the unknown variables should be, using unification judgements of the following form:

Γ1 ⊢ τ1 ∼ τ2 =⇒ Γ2

which are defined such that:

1. Γ1 and Γ2 contain the same type variables;

2. Γ2 is more informative than Γ1 in the sense that declared type variables have been given
definitions in order for τ1 ∼ τ2 to hold: Γ1 ⊑ Γ2

3. The information increase is minimal (most general) in the sense that it makes the least
commitment in order to solve the equation: any other solution Γ1 ⊑ Γ′ factors through
Γ1 ⊑ Γ2.

Type Inference Rules

To keep track of the solutions to unification problems in context, we will decompose the typing
judgement to allow for an additional output — an updated typing context which represents the
minimal information increase over the input context (obtained via unification rules!) in order to
infer the type of the expression.

Inputs Expression, Context

Outputs Type, Context

We will write this as Γ ⊢ e =⇒ τ ⊣ Γ, to make clear what the inputs and outputs are.

Let Generalisation

Earlier we decided to use let expressions as the syntactic point for ∀-generalisation. If we consider
this example:

let f = (recfun f x = (x, x)) in (fst (f 4), fst (f True))

Just examining the inner recfun, we would compute a type like α → (α × α). The placeholder
α would not be in use anywhere else — it would not be mentioned in the context outside of the
recfun. We would expect the function f in the context to have a type like ∀a. a → (a×a). Thus,
we can define our generalisation operation to take all free placeholder variables in the type that

3



are not still in use in our context, and ∀ quantify them. This operation will be used only by the
type inference rule for let expressions, as well as the one for the entire program at the top level.

This means that let expressions are now not just sugar for a function application, they actually
play a vital role in the language’s syntax, as a place for generalisation to occur.

Overall

We’ve started examining characteristics of a variant of Robin Milner’s algorithmW (variant thanks
to Adam Gundry) for type inference. Further details will be released with Assignment 2. Many
other algorithms exist, for other kinds of type systems, including explicit constraint-based systems.
This algorithm is restricted to the Hindley-Milner subset of decidable polymorphic instantiations,
and requires that polymorphism is top-level — polymorphic functions are not first class.

4


